Radical cascades in electron transfer dissociation (ETD) - implications for characterizing peptide disulfide regio-isomers.
نویسندگان
چکیده
Direct characterization of peptides with multiple disulfide bonds by mass spectrometry is highly desirable. In this study, electron transfer dissociation (ETD) of peptide disulfide regio-isomers was studied using model peptides containing two intrachain disulfide bonds. ETD provided rich sequence information (c/z ions) even for the backbone region under the coverage of two disulfide bonds. This behavior presented an analytical advantage over low energy collision-induced dissociation (CID) of protonated intact peptide ions, which produced very limited sequence (b/y) ions. Mechanistic studies suggested that the formation of c/z ions under the two disulfide bond covered region resulted from an initial N-Cα bond cleavage, followed by radical cascades to cleave multiple disulfide bonds. The ETD spectra of the disulfide regio-isomers produced similar product ions due to radical cascades; while the relative intensities of the product ions varied, to a certain degree, which could be helpful in distinguishing isomers with overlapping disulfide bonds.
منابع مشابه
Does Electron Capture Dissociation Cleave Protein Disulfide Bonds?
Peptide and protein characterization by mass spectrometry (MS) relies on their dissociation in the gas phase into specific fragments whose mass values can be aligned as 'mass ladders' to provide sequence information and to localize possible post-translational modifications. The most common dissociation method involves slow heating of even-electron (M+nH) n+ ions from electrospray ionization by ...
متن کاملSimulating electron transfer attachment to a positively charged model peptide.
Ab initio electronic structure methods, including stabilization method tools for handling electronically metastable states, are used to treat a model system designed to probe the electron-transfer event characterizing electron-transfer dissociation (ETD) mass spectroscopic studies of peptides. The model system consists of a cation H(3)C-(C=O)NH-CH(2)-CH(2)-NH(3)(+), containing a protonated amin...
متن کاملCharacterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data.
Structural characterization of a glycopeptide is not easily attained through collision-induced dissociation (CID), due to the extensive fragmentation of glycan moieties and minimal fragmentation of peptide backbones. In this study, we have exploited the potential of electron-transfer dissociation (ETD) as a complementary approach for peptide fragmentation. Model glycoproteins, including ribonuc...
متن کاملThe Role of Electron Transfer Dissociation in Modern Proteomics
Nicholas M. Riley†,‡ and Joshua J. Coon*,†,‡,§,∥ †Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States ‡Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States Morgridge Institute for Research, Ma...
متن کاملProbing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity.
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via beta-elimination and Michael addition of various thiol compounds. These include ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 138 22 شماره
صفحات -
تاریخ انتشار 2013